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Abstract  

The chemical, physical and symmetry constraints of 
an electron-density map impose relationships between 
structure factors, and these relationships are exploited 
during refinement. However, constraints often allow 
an artificially high correlation between the model and 
the original structure factors, a flaw known as model 
or refinement bias. Elimination of the bias component 
of a constrained model, the component insensitive to 
constraints, enhances the power of phase-refinement 
techniques. The scale of the bias component, here de- 
noted as '7, is shown to be equal in magnitude to the 
origin vector of the interference function G that defines 
the relationships between the structure factors. The "T 
correction leads to solvent flipping in the case of phase 
improvement by solvent flattening, and other types of 
constraint allow a similar treatment. 

1. Model  bias 

Since only amplitudes of structure factors can be mea- 
sured directly, the phases of electron-density maps need 
to be inferred or refined from a model. Such a model 
is not necessarily just an atomic model. It might in- 
clude a description of non-crystallographic symmetry, 
for example, and also solvent flatness is an implicit, 
but very important aspect of atomic models. Obviously, 
only a correct model will provide proper phases, and 
its correctness is usually estimated by a comparison 
between its structure-factor amplitudes and the observed 
o n e s .  

Model bias is the tendency of a calculated electron- 
density map to confirm the model that provided its 
phases, even if the model is only partially correct. 
In such cases, O-A-weighted structure-factor amplitudes 
minimize model bias (Srinivasan & Ramachandran, 
1965; Read, 1986). However, an underlying assumption 
of this weighting scheme is that the model and the 
observed data are mutually independent. Usually this is 
not the case if a model has been refined, because then 
the model has already been adapted to have structure- 
factor amplitudes more like the experimentally observed 
ones. After refinement, density maps will therefore be 
biased towards the original starting map, even if aA 
weighting is used. This causes premature convergence to 
a wrong solution, with model structure-factor amplitudes 

agreeing with experimental ones, yet being phased 
incorrectly. It is for this reason that structure solutions 
need to be validated. 

A powerful tool for the validation of structural models 
is the free R factor (Brtinger, 1992). It is a measure of the 
differences between model structure-factor amplitudes 
and a subset of observed structure-factor amplitudes not 
used in the refinement. If the final model is correct, this 
should result in the correct reconstruction of the subset. 

In the early stages of a structure solution, when 
interpretation of electron density in terms of an atomic 
model requires the improvement of phases, constraints 
need to be derived from general criteria. The following 
criteria have been used: solvent flatness (Wang, 1985), 
non-crystallographic symmetry (Bricogne, 1974), the 
general atomic shape described by Sayre's equation 
(Zhang & Main, 1990a), and the expected histogram 
of the electron density (Zhang & Main, 1990b). How- 
ever, models constructed from these constraints are 
less restrictive than atomic models, and their validation 
requires a more elaborate approach than the calculation 
of a free R factor. One of the problems in these cases is 
that leaving out a subset of structure factors can greatly 
influence the maps used for generating the model, thus 
reducing the power of the technique (Grimes & Stuart, 
1994) - without due care and attention one could end 
up with validated, but sub-optimal electron density. 

Complete validation avoids this problem. Here, the 
data are divided into ten to 20 different subsets and a 
series of density maps is calculated, as each of these 
subsets is left out in turn. After modification of the 
maps, only the reconstructed structure factors are used 
for the calculation of the final map (Cowtan & Main, 
1996). Below, a procedure is described which allows 
an economic and straightforward implementation of the 
most rigorous complete validation. It is comparable to 
leaving out each observation in turn in a single round of 
refinement, and is especially suited for phase refinement 
without an atomic model. 

2. The interference function G 

The convolution of two functions at a single point is 
determined by shifting the origin of the first function 
to this point, and then calculating the integral of the 
product of the two functions. This procedure is repeated 
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for each point of the second function, every time shifting 
the origin of the first. For example, the convolution of 
a perfect image with a response function that describes 
how an imperfect measuring device smears out a single 
pixel, will result in the blurred image that would be 
measured by this device. 

Convolution can be a tedious and lengthy process. 
However, according to the convolution theorem, there 
is a more economical way to obtain the same result. 
This theorem states that the Fourier transform of a 
convolution of two functions is equal to the product 
of the individual Fourier transforms of each of the two 
functions. 

For the sake of clarity, a shorthand notation will be 
used throughout the rest of the paper, which will be 
introduced here. The Fourier transform within a unique 
volume V of a function f is equal to F, where f and F 
are functions of a vector x, 

F(y) = ~f(x)exp(27rixy)83x, F 
, J  

V 

f ~flx)  = V -1 fF(y)exp(-27vixy)83y. 

Convolution is indicated by the symbol * 

= (F*G)(x) = fF(y)G(x- F*G y)Sy. 

If the symbol <:¢, denotes a Fourier pair as in F ¢:~ f and 
G ¢:> g, then the convolution theorem can be formulated 
as follows, 

F*G ¢=~ fg. (1) 

In protein crystallography, a real-space shape function 
g is usually defined by grid points taking on either the 
value '1' or '0'. The Fourier transform G of the shape 
function is often referred to as the interference function 
(Rossmann & Blow, 1962). 

3. G, 7 and solvent flattening 

Density modification by solvent flattening can be de- 
scribed as the multiplication of a shape function with an 
electron-density map. Here, the shape function describes 
the protein mask, where grid points corresponding to 
protein are set to '1', whilst those within the solvent 
region are set to '0'. If a density map has been calculated 
with an F000 of zero, and if subsequently the difference 
between the solvent and protein electron density is added 
to every grid point, a correctly phased map will remain 
unchanged upon multiplication with the shape function, 

g(c + If) = c + f. (2) 

Here, e is a constant function, g is the shape function of 
the protein, f is the correct electron-density map. 

Although computationally very inefficient, it is useful 
to consider the effects of solvent flattening in reciprocal 
space, where the Fourier transform of the shape function 
describes the dependence of each of the individual 
structure factors on itself and surrounding ones (e.g. 
Bricogne, 1974). Provided the phases are assigned cor- 
rectly, none of the structure factors will be affected 
by the convolution with the interference function. This 
becomes apparent from the Fourier transform of (2) [see 
also Crowther (1967), note that the Fourier transform C 
of the constant function e is zero everywhere except at 
the origin] 

G*(F + C) = F + C. (3) 

A simple multiplication by zero in real space is equiv- 
alent to a series of vector multiplications and additions 
in reciprocal space, in all cases resulting in identity! See 
also Fig. 1. Solvent flatness, therefore, poses powerful 
constraints on structure factors, especially when the 
solvent content is high, and this merits a more detailed 
examination of the associated interference function. 

Fig. 2 shows the radial distribution of the intensity of 
the interference function G corresponding to the Fourier 
transform of a 3.2 ]k mask of the protein complex F1- 
ATPase (Abrahams, Lutter, Leslie & Walker, 1994). 
Most of the intensity of this interference function is 
around the origin. Upon convoluting the structure factors 
F with G, structure factors will therefore mainly be 
recombined locally in reciprocal space. 

The convolution with G improves phases of incor- 
rectly phased structure factors because the many vector 
additions cancel out random errors, thus enhancing sys- 
tematic correlations between structure factors. A better 
map results, and after recombining the erA-weighted 
observed structure-factor amplitudes with the phases of 
the improved map and possibly with experimental phase 
information, the procedure can be iterated. Provided 
every iteration results in a better map, eventually the 
correct map might be produced when the condition 
expressed in (2) is reached. However, in practice this 
turns out not to be the case. Already in the very 
first iterations, errors that are not cancelled out by the 
convolution will compromise the procedure. 

One clear source of systematic errors is the phase 
recombination, where the independence between the 
observed structure-factor amplitudes and the convoluted 
structure-factor amplitudes has to be assumed. Where 
this assumption is incorrect, the quality of the convoluted 
structure factors will be overestimated, resulting in a 
bias. 

Since the shape function g in (2) is real, its Fourier 
transform G in (3) is symmetrical. Although G is a 
complex function, the origin vector will never have an 
imaginary component because of its symmetry, and the 
magnitude of the origin vector, denoted here by the 
scalar 7, will reflect the mean value of g. Consider the 
convolution G*F as consisting of two components (see 
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also Fig. lb) 

G*F = G 7*F + 7F, (4) 

where G7 is the interference function G with its origin 
vector set to zero, and where "2' is the magnitude of the 
origin vector of G. t  

t Equation (4) follows directly from the convolution theorem: 
G*F = (G 7 + D)*F = G 7 .  F + D*F = G3 *F + 7F. (Where G~ t is de- 
fined as above and D is a Dirac function which is zero exept at the 
origin, where it equals the origin of G. From the definition of the 
convolution it follows that F*D is equal to a scale factor times F if D 
is a Dirac function. The scale factor is determined by the the value of 
the origin of D.) 

This equation forms the foundation on which the 
major conclusions of this paper are based. It allows 
separation of the information provided by the shape 
function (G 7 .  F) from the information that was already 
present in the original structure factors (TF). It implies 
that the result of a convolution of a data set of structure 
factors with an interference function is biased towards 
the original data set by a factor 7. Even a structure 
factor in complete disagreement with the rest of the 
data will contain a component of its original value after 
the convolution. Given a convolution G ' F ,  the bias 
can trivially be removed when "7 is known. All that is 
required is to subtract the original, unconvoluted data 

x ---J'"'  

fxg 

f : O , O , O ,  4, 0 , - 3 , - 5 , - 2 ,  2, 5, 2 , - 3 , 0 , 0 , 0 , 0  
g : O , O , O ,  1, 1, 1, 1, 1, 1, 1, 1, 1 , 0 , 0 , 0 , 0  
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Fig. 1. (a) When two functions f and g are multiplied in real space, 
the product can be identical to f. For example, this is the case 
when g is '0' where f is '0', but where g is '1' otherwise. It 
follows from the convolution theorem that if (fg = f), then the 
convolution of the Fourier transforms of f and g (here denoted 
as F and G, respectively) must equal the Fourier transform of f: 
(fg = f ~ F * G  = F). An example is given in a one-dimensional 
case. Here the Fourier transform F of f is: (0), (1.177-3.933i), 
(5.536+ 14.778i), (-14.508-12.948i), (5 + 3i), (6.266-3.481i), 
(-1.536 + 0.778i), (-0.934 + 5.966i), (-2), (-0.934-5.966i), 
(-1.536-0.778i), (6.266 + 3.0480, (5-3i), (-14.508 + 12.947i), 
(5.536-14.778i), (1.765+ 3.933i). The Fourier transform G of 
g is: (9), (-4.645 + 1.924i), (-0.707 + 0.707i), (0.572-1.383i), 
(-i), (0.256 + 0.617i), (0.707 + 0.707i), (-0.184--0.076i), 
(-1), (-0.184 + 0.076i), (0.707-0.707i), (0.256-0.617i), (i), 
(0.573 + 1.383i), (-0.707-0.707i), (-4.645-1.924i). (b) The identity 
F*G = F is demonstrated for the vector with index l [which is 
(1.177- 3.933i) in F]. In order to determine the new vector after 
convolution, 16 vector multiplications are required, after which the 
sum of the products is calculated. The graph shows the summation 
of the vector products in the complex plane as a dashed line which 
starts at the origin. Note that the sum is (18.83-62.93i), which, 
after scaling down by a factor of 16 (the number of data points in 
the convoluted function), equals (1.177-3.933i). Also note that the 
vector depicted by a solid arrow starting at the origin, and which 
coincides with the summation of all vectors, is the product of the 
original vector and the origin vector of G. 
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set, scaled by 7, 

Gq*F = G*F - 7F. (4a) 

Substitution of (4) into (3) shows that, given correct 
phases, the removal of the origin from the interference 
function before convolution is equivalent to scaling 
down the data set of structure factors. The identity 
expressed in (2) and (3) is not altered, 

GT*(F + C)= (1 - 7 ) ( F  + C) (5) 

The source of the dependence of an individual con- 
voluted structure factor on the original unconvoluted 
one was identified in (4). However, the use of the 7- 
corrected interference function G 7 instead of G, ensures 
elimination of the ghosts of the original structure factors. 
It thus establishes the independence between correspond- 
ing structure factors before and after the convolution. 
Usage of G 7 instead of G therefore allows the erA 
weighting scheme. 

In the case of solvent flattening 7 is the mean of the 
shape function g and is therefore equal to the fractional 
volume of the unit cell occupied by protein 

7= Vr/V. (6) 

V is the volume of the unit cell, and Vp is the total 
volume occupied by protein. 

600 

5 0 0 -  

4 0 0 -  

3 0 0 -  

r,q 

200 

100 

#'1=,,I 
v ~  , i I 

° 8 8 ~ § 

Number of structure factors 
around the origin 

Fig. 2. Radial distribution of the accumulated power spectrum of the 
interference function derived from a 3.2/~ envelope of the structure 
of F~ ATPase (Abrahams, Lutter, Leslie & Walker, 1994). On the 
horizontal axis the number of structure factors, in spherical bins 
around the origin is denoted, the vertical axis shows the integral 
of the squared structure-factor amplitudes within these bins on a 
linear, arbitrary scale. 

Setting the origin of a symmetrical function in re- 
ciprocal space to zero is equivalent to subtracting the 
mean from all grid points in real space. For example, 
in the case of a crystal containing 50% solvent, half of 
the grid points of g is set to '1', identifying the shape 
of the protein, whilst the remainder is set to '0'. After 
subtraction of the mean of g, which in this case is '0.5', 
half of the grid points will be set to '0.5', whilst the 
other half will be set to '-0.5' .  Upon re-scaling (which 
does not essentially alter the outcome), the grid points 
defining the protein will be set to '1',  and those defining 
the solvent will be set to ' -1 ' .  Multiplication of this g7 
function with the density map therefore results in the 
inversion of solvent features, whilst the protein fraction 
will remain unchanged. See also Fig. 3. Therefore, in the 
case of solvent flattening, the usage of G 7 instead of G 
is equivalent to flipping features in the solvent region. 
The solvent flipping factor kflip as defined in Abrahams 
& Leslie (1996) can be calculated from 7, 

kflip = 7 / ( " / -  1). (7) 

1 - 

0 . 5 -  

(a) 

0.5- 

-0.5 
(b) 

Fig. 3. A shape function g that defines the protein and solvent regions 
takes on the values '0' and '1 ', and has a mean value denoted by '7'. 
After subtracting 7 from g, grid points defining solvent will take 
on negative values, whilst those defining the protein region will be 
positive. Upon multiplication of the g corrected function g7 with 
the density function f, features in the solvent region will be flipped 
with respect to the protein region. A one-dimensional example is 
given, with the uncorrected function in (a), and the "~-corrected 
function in (b). 
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The predicted variation in kftip with solvent content 
closely matches the optimum refined values of kflip in a 
range of crystals with solvent contents between 30 and 
70%, judged from the experience of many users of the 
solvent-flipping procedure. 

The function G*C in (3) defines the mean difference 
between the protein and solvent density. Since C is only 
non-zero at the origin, and since G does not extend 
far into reciprocal space, only low resolution terms are 
significantly affected by this additive term. 

4. G, 7 and non-crystallographic symmetry 

The operator describing non-crystallographic symme- 
try in real space also defines relationships between 
structure factors in reciprocal space (Bricogne, 1974). 
However, these related structure factors represent inde- 
pendent measurements. Averaging therefore reduces the 
bias component of the original structure factor indepen- 
dently from the mixing of structure factors by solvent 
flattening. This results in a correction of 7, 

~Y = 7prot(1/n), (8) 

")/prot is the mean value of the shape function of all protein 
in the asymmetric unit and is independent of the non- 
crystallographic symmetry, the factor (l/n) defines the 
volume fraction of unique density in the protein region. 
If, for example, a protein complex contains six identical 
subunits related by non-crystallographic symmetry, and 
one unrelated subunit, the factor (l/n) will represent the 
fraction relative to the volume of all seven subunits, of 
the volumes of only one of the symmetrical subunits, 
together with that of the unrelated monomer. 

Sometimes it can be beneficial to use non- 
crystallographic symmetry to restrain, rather than 
to constrain a structure. For example, one can locally 
weight averaging by the likelihood that related electron 
density is identical. See for example Abrahams & Leslie 
(1996), where this procedure was implemented as part of 
a density modification protocol, or Abrahams (1996a), 
where it was implemented in atomic refinement. Here, 
the fraction of unique density in the protein region is 
larger than the inverse number of monomers, implying 
that 7 should be decreased less than in the case of 
un-weighted averaging. Precisely this behaviour can 
be observed in Figs. 3(c) and 3(d) of Abrahams & 
Leslie (1996). 

5. G7 and histogram matching 

The density-modification technique of histogram match- 
ing sharpens a map by enhancing its high-resolution 
components (Zhang & Main, 1990b). A histogram of the 
density is compared to that of an ideal map at the same 
resolution, after which the map is re-scaled in density 

bins to reflect the ideal histogram. Histogram matching 
can be implemented analogously to solvent flattening, 
provided that the shape function g in (2) is assumed not 
only to define the flat solvent, but also the re-scaling 
of protein density. If the histogram of the experimental 
map does not match the theoretical histogram, g is an 
analogue function; otherwise it is binary. The additive 
component c in the left hand side of (2) will, in most 
cases, no longer be constant over its entire volume, but 
take on a different value inside the protein region. 

Irrespective of whether g is binary, the relationship 
defined in (4) still holds, since it only assumes that g 
is real. A map modified by histogram matching will 
therefore still contain a residual bias component, and this 
can be removed in the same way as in solvent flattening. 
Now however, "y has to be calculated explicitly from 
the shape function g, rather than to be inferred from 
the solvent content. The maps before and after density 
modification determine the shape function, 

g = (fm + c)/(fo + c). (9) 

Here, fo is the original density before histogram 
matching and solvent flattening, and fm is the modified 
density. The function c needs to be adjusted in the 
protein region so that at any grid point where (fo + c) 
is zero, the sum (fm + c) is zero too. 

Since a histogram provides independent constraints, -y 
will be reduced if this information is used together with 
constraints on solvent flatness. 

6. G-y and Sayre's equation 

When data to atomic resolution is available (2.5/~ or 
better), constraints based on the atomic shape as defined 
by Sayre's equation become useful in phase refinement 
(Zhang & Main, 1990a). The same considerations as in 
histogram matching pertain to the residual bias com- 
ponent after applying these constraints and ,y should 
therefore be calculated from the shape function g, which 
in its turn is determined as in (9). 

7. G, 7 and protein truncation 
In protein truncation, grid points within the protein 
region with a density lower than a certain value are set to 
this value (Schevitz, Podjarny, Zwick, Hughes & Sigler, 
1981). This improves phases in conjunction with solvent 
flattening and flipping (Abrahams & Leslie, 1996). As 
in solvent flattening, a certain fraction of the map is set 
to a constant value. The correction of 7 can assumed to 
be additive, 

7 = 7p + %. (10) 

Where 7p and % are the fractional volumes of the protein 
and the truncated density, respectively. 
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The crude technique of protein truncation is equiva- 
lent to over-shifting a more realistic modification func- 
tion that sharpens electron dense areas in the protein 
region as in histogram matching, albeit in just two 
density bins. Since the 7 correction also over-shifts 
density modification, and, in reciprocal space, structure 
factor changes, it probably does not make sense to apply 
it to protein truncation, as this would result in over- 
shifting twice. However, the removal of negative density 
by protein truncation after adding in F000 might prove 
to be an exception. 

8. G, 7 and atomic refinement 

It is beyond the scope of this paper to discuss the shape 
function g that defines the constraints imposed by an 
atomic model. One of the difficulties is that the function 
c in (2) is no longer constant in the protein region in the 
case of phase errors. However, in many cases it might 
not be necessary to determine 7 from g, and instead one 
can derive the residual bias component of the model to 
a good approximation from a comparison between the 
refinement R factor Rf and the free R factor Rfree, using 
the following equation, 

Rf{IFol; IFcl-"),lFol} =Rfree {IFol; IFcl} ( l l )  

where Rf{X;Y}= ~hk l lX -kY I /~hk l lX I ;  k is a scale 
factor identical for Rf  and Rfree. 

Once ~ is determined from (11), the model structure 
factors Fc can be corrected by subtraction of ~Fo (7- 
scaled observed structure factors) before t7 A weighting. 
If 7 were to be derived directly from g, there would be 
no need for a free R-factor determination. 

9. Conclusions 

The 7 correction complements the O'A weighting scheme 
by removing the model-independent correlation between 
Fc and Fo. One of the premises of the O-A weight- 
ing scheme is that corresponding structure factors are 
independent, a supposition that is usually incorrect. 
However, the 7 correction to Fc establishes the required 
independence. Maps with a minimum bias require both 
the 7 correction and OA weighting of the structure 
factors. 

In some ways, applying the 'y correction is compara- 
ble to calculating a free R factor: the information about 
an individual structure factor is not used to calculate the 
corresponding model structure factor, and instead one 

relies on the model to reconstruct this vector. However, 
there is an important difference: all the data are used, and 
though an individual structure factor does not influence 
its corresponding constrained model structure factor, 
it does contribute to the calculation of other structure 
factors, unlike in the calculation of a free R factor. 

The merits of applying the '7 correction have already 
been demonstrated in the case of solvent flattening. 
In this case the correction is equivalent to solvent 
flipping, a procedure first introduced in the program 
Solomon (Abrahams & Leslie, 1996; Abrahams, 1996b). 
However, the considerations which explain the success 
of solvent flipping also pertain to other techniques of 
refinement. In the cases of non-crystallographic symme- 
try, histogram matching and Sayre's equation, similar 
corrections can be applied, and these are already, or 
soon will be, implemented in a new version of Solomon. 
Note that in these latter cases not only the modification 
of the solvent region is over-shifted by the 7 correction, 
but that also the modification of the protein region is 
exaggerated. 

I am very grateful to Andrew Leslie for stimulating 
discussions and for carefully and critically reading the 
manuscript. 
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